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Finite and Boundary Elements for the 
Simulation of Injection Molding Process 
1. K. BEREZIN, A. M. GOLUBICKY and A. I. PONOMARCHUK 
Institute of Continuous Media Mechanics, Perm, USSR 

Problems dealing with computations of pressure and velocity fields in the fluid flow through channels 
of complete geometry are discussed. 

KEY WORDS Fluid flow, complex channel geometry. simulation injection molding. 

INTRODUCTION 

The advanced technology of polymer processing gives rise to a number of rather 
essential problems, dealing with computation of pressure and velocity fields and 
determination of the boundary position (free surface boundaries) in the fluid flow 
with nontrivial rheological properties through a channel of complex geometry. 
Numerous mathematical methods which have been proposed to date provide nu- 
merical simulation of unsteady viscous flows with a free surface. To model the 
flows with insignificant medium displacement one employs a Lagrangian approach 
according to which the computational mesh is moving together with the continuum. 
The Eulerian interpretation is found to be suitable for the flows without unsteady 
free boundaries. The mixed Euler-Lagrangian methods are commonly used for 
problems which require description of the free surface shape. What is specific for 
the above-mentioned problems is the existence of a computational stage, which 
involves evaluation of principal variables for the known domain with the specified 
boundary conditions at a given time step. To this end the present work employs 
methods of finite and boundary elements. 

MATHEMATICAL MODEL 

This paper is concerned with the process of viscous flow through a channel with 
rigid walls, at the specified flow rate or pressure with a free surface of undetermined 
position, varying with time. It is worth noting that in the present problem the 
integration domain of the equation of motion is generally unknown and should be 
subsequently defined. This suggests nonlinearity of the boundary condition problem 
since the unknown boundaries should be derived from the unknown solution. In 
this case the solution can be obtained by using the iteration procedure to define 
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the shape of the boundary, starting with some known reference position in space. 
The entire process is subdivided into a finite number of time steps. Finite element 
methods (FEM) and boundary element methods (BEM) have been applied to  solve 
the equation of motion and define the velocity field and pressure at the time step 
under consideration. Then, using the kinematic equation one defines the position 
of the free surface at the subsequent time increment. A new boundary configuration 
determines a new integration range for the equations of motion. The time stepping 
is repeated up to the desired time increment. Mathematical treatment of the prob- 
lem reduces to integration of the motion equations for an incompressible fluid 
which, upon elimination of the Newtonian part of the stress tensor, are written as: 

-Vplp + uAU = (aU/ar + UeVU)  + div T' + pg; div U = 0; (1) 

where U is the velocity, p is the pressure, p is the density, u is kinematic Newtonian 
viscosity, g is the acceleration of gravity and T' is the extra-tensor, the form of 
which depends on the type of rheological law. In the case where tensor T' depends 
npnlinearly on the shear rate, solution to the system (1) can be obtained by per- 
forming iteration separately at each time increment. If r = r, U Tz are boundaries 
of the domain, the following boundary conditions are satisfied on it: 

x E T,:U = Ub; x E T,:t = T . n  = - ( p o  + aK)  (2) 

where Tis the stress tensor, n is the outward normal, po  is the external gas pressure, 
a is the coefficient of the surface tension and K is the surface curvature. The 
Equations (1) and (2) constitute a boundary-value problem for the domain with 
defined boundaries. Boundary deformation due to the fluid motion can be rep- 
resented mathematically through kinematic conditions. By denoting the radius- 
vector of the material particle at the surface by r and assuming that the particle 
preserves its position within the domain (but is allowed to move at the solid bound- 
ary) one obtains the boundary relation U = drldt in terms of substantial products, 
which is a special case of the kinematic condition dFldt = 0, where F(r) = 0 
specifies the free-surface position in terms of Eulerian variables. This condition 
doesn't hold at the line at the 3-phase contact due to the existeiice of singularity, 
which is ignored in the present work. 

FEM SIMULATION 

The FEM is one of the possible routes to numerical realization of the above 
procedure. In the present paper the FEM is used to analyze slow isothermal flows 
of highly-viscous fluid. In this case we consider the whole process of movement 
according to quasi-stationary statement based on the solution of the series of elliptic 
problems. As a variational functional we choose 

J ( U ,  p )  = I ( -pe i j /p  + ueijeij - g j U i )  dR - I t jUi d r , ,  (3) 
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where e,, are the component of the strain rate tensor. In the case of a free surface, 
the second integral is set of zero. Numerical analysis for choosing the FE grid and 
the approximation degree has shown that the triangular element grid using the 
linear velocity approximation and the constant pressure magnitude inside the quad- 
rilateral associating two neighboring triangles is a suitable approach. 

Rheological behavior of a fluid was described by the power law with the yield 
strength. Problems of a viscous fluid spreading under various boundary conditions 
have been solved as test cases. The magnitude of fluid volume varied no more than 
0.1 per cent from the initial value. Figure 3 shows one set of calculated results. 
Figure 1 shows the forming of a Newtonian fluid jet, while Figure 2 shows power 
law fluid jet with the yield strength. The different characters of fold formation on 
a free surface are seen. In the problems under consideration we used a Lagrangian 
grid for the FEM. This grid cannot be used to calculate flows with large forming. 
For such cases we have developed a numerical procedure that proved successful 
in modeling the flow in channels with complex geometrical form. 

FIGURE 1 Formation of Newtonian fluid jet. 

FIGURE 2 Power low fluid jet. 
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FIGURE 3 Typical viscous fluid spreading. 

BEM SIMULATION 

In order to calculate Newtonian fluid flows with a free surface the BEM is highly 
efficient. The equations for Stokes flow provide adequate accuracy as well as the 
initial linearization when it is necessary to solve Navier-Stokes full equations using 
the BEM. Approximating the term aU,/at using implicit scheme finite differences, 
we may write (1) in components of the Cartesian system. 

-p2u; + T;k.k  = -pzu,! - ( T ; k  - u ; u k ) ,  k = Qi ,  div u = 0, (4) 

where p2 = l/At, At is the discretization-time step, Tjk  is the Newtonian part of 
stress tensor, Ti;, is the non-Newtonian addition to the full stress tensor, and Ui is 
the field on the previous time step. The original system (4) is reduced to the integral 
relation with boundary values defined while solving the boundary integral equation 

where U $  t y, is the fundamental solution, [ is the fixed point at r and the coefficient 
cij is equal to 1/26,, in case of a locally smooth surface in the neighborhood of [. 
The solution ( 5 )  is carried out by applying the quadrature technique to the system 
of isoparametric BE and inner cells with linear approximation of the values of field 
variables. The simplest case of quasi-stationary approximation of slow Newtonian 
flows p = 0, Q; = 0 lacks the integral over R, so that the total problem is formulated 
in terms of boundary values. The elementary character of the fundamental solution 
allows us to estimate all necessary boundary integrals analytically. Consideration 
of the unsteady state (p # 0) introduces considerable complication into the fun- 
damental solution, leading to numerical integration over both r and R. In contrast, 
to the previous case there appears a source term, which at small values of linearity 
has the form Q; = p2U;. 

It should be emphasized, however, that in the sense of aU,/at approximation. 
U l  assumes the value derived from Eulerian (stationary) mesh. Lagrangian mesh, 
fixed to the nodes during the fluid motion, is preferable for problems with free 
boundaries. Such meshes automatically allow for the convective term of the source 

The last special case involved nonlinear quasi-stationary equations of motion 
with the source term in the form of divergence of symmetrical tensor T:, - UjUi 

Q; = p2Ul - U ; . k U k  = p2U]: 
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FIGURE 4 Newtonian fluid filling a channel of complex geometry. 

FIGURE 5 Bubble displacement in inclined channel. 
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FIGURE 6 Capillary splitting of the free jet. 

= T& which can be used to tranform the integral over the solution domain and 
to express it directly in terms of T,!;. The obtained nonlinear integral equation is 
solved by use of the prime iteration technique, the convergence of which is ensured 
by an insignificant nonlinear contribution. 

The computational algorithms for the above-mentioned cases have been carefully 
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verified to demonstrate monotonic convergence during transition to a more refined 
mesh. Special attention has been paid to simulation of the (usually multistage) 
filling processes observed in the channels of technological equipment. To this end 
several algorithms have been developed to  follow the advance of the fluid front, 
and plugging of residual gas. Figure 4 shows the stages of consequent filling of a 
channel of complex geometry with a Newtonian fluid. 

Within the framework of the boundary element method one can take into account 
the effect of capillary forces. This is illustrated by a model problem of a gas bubble 
displacement from an inclined channel, presented in Figure 5 .  It is readily seen 
that the initially flat liquid-gas interface is gradually dropping under the external 
pressure loading and then rising to allow for the gas bubble displacement along 
the upper wall of the channel until it completely escapes. Here, along with internal 
gas pressure, one more factor has been taken into account: the value of dynamic 
wetting angle, which in this case is equal to 135". This factor has a qualitative effect 
on the total process; hence, at the angular value of 45" displacement doesn't occur, 
and the bubble is stabilized at the lower part of the channel. Figure 6 shows the 
process of capillary splitting of the free jet, which represents the development of 
initial sinusoidal disturbance of the free surface. According to the well-known 
Rayleigh criterion, the splitting takes place at M2ar > 1, which is in agreement 
with calculations, carried out for values of 0.8 and 1.2 for the left side of the 
inequality. 
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